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Abstract 1 

  Previous studies have shown that longwave (LW) spectral fluxes have unique merit in 2 

climate studies. Using Atmospheric Infrared Sounder (AIRS) radiances as a case study, this study 3 

presents an algorithm to derive the entire LW clear-sky spectral fluxes solely from hyperspectral 4 

observations. No other auxiliary observations are needed in the algorithm. A clear-sky scene is 5 

identified using a three-step detection method. The identified clear-sky scenes are then 6 

categorized into different sub-scene types using AIRS radiances at six selected channels. A 7 

previously established algorithm is then used to invert AIRS radiances to spectral fluxes over the 8 

entire LW spectrum at 10 cm-1 spectral interval. Accuracy of the algorithms is evaluated against 9 

collocated Clouds and the Earth's Radiant Energy System (CERES) observations. For nadir-view 10 

observations, the mean difference between outgoing longwave radiation (OLR) derived by this 11 

algorithm and the collocated CERES OLR is 1.52 Wm-2 with a standard deviation of 2.46 Wm-2. 12 

When the algorithm is extended for viewing zenith angle up to 45°, the performance is 13 

comparable to that for nadir-view results.  14 

Key words: longwave spectral flux; OLR; clear-sky detection; sub-scene type classification; 15 

hyperspectral observations; AIRS 16 
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1. Introduction 18 

Broadband outgoing longwave radiation (OLR) obtained by Earth's Radiation Energy Balance 19 

(ERBE; Barkstrom 1984) and Clouds and the Earth's Radiant Energy System (CERES; Wielicki et 20 

al., 1996) has been extensively used in climate studies for three decades. The physical quantity 21 

directly measured by the ERBE or CERES instruments is actually a convolution between 22 

broadband upwelling radiance at a given viewing zenith angle and the spectral response 23 

function (SRF) of the broadband radiometer on the EREB or CERES. Then the broadband 24 

upwelling radiance is inferred through deconvolution of the measurement and, consequently, it 25 

is converted to broadband flux (e.g. Loeb et al., 2005; Kato and Loeb, 2005). In order to reliably 26 

derive the broadband flux, a variety of auxiliary information needs to be used to define the 27 

scene type for each instrument footprint. Such auxiliary information includes, but is not limited 28 

to, surface temperature, lapse rate, precipitable water, and cloud macroscopic properties (e.g. 29 

cloud fraction, cloud emissivity). For the case of CERES, such auxiliary information is obtained 30 

from other satellite measurements such as MODIS and SSM/I as well as operational analysis 31 

(Loeb et al., 2005).  32 

The integrand of broadband OLR, the spectral flux, is not available from the broadband flux 33 

measurements such as ERBE or CERES because of the nature of broadband radiometer in these 34 

measurements. However, the spectral flux can provide critically valuable information for the 35 

climate model diagnostics. Especially, comparing modeled and observed spectral flux can 36 

expose compensating biases in the simulated radiation budget by the climate model that 37 

otherwise cannot be exposed from broadband flux diagnostics alone (Huang et al., 2006; Huang 38 
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et al., 2013; Huang et al., 2014). Similarly, spectral cloud radiative forcing can also help expose 39 

compensating biases from different bands (Huang et al., 2013; Huang et al., 2014).   40 

Currently there are several operational hyperspectral sounders in space that measure 41 

spectral radiances in thousands of IR channels, for example, Atmospheric Infrared Sounder 42 

(AIRS; Aumann et al., 2003) since 2002, Infrared Atmospheric Sounding Interferometer (IASI; 43 

Hilton et al., 2012) since 2006, and Cross-track Infrared Sounder (CrIS; Han et al., 2013; Strow et 44 

al., 2013) since 2011. Each of these sounders can acquire several millions of spectra per day. A 45 

series of studies published in recent years (Huang et al., 2008, 2010, 2014; Chen et al., 2013) 46 

have established algorithms to estimate observation-based spectral flux from the AIRS 47 

radiances using the scene type information from collocated CERES footprints. Specifically, 48 

spectral angular distribution models (ADMs) for each AIRS channel have been constructed for 49 

the scene types defined for the CERES SSF (Single Satellite Footprint) data set and then applied 50 

to AIRS radiances to derive spectral flux at each AIRS channel. The spectral ADMs are trained 51 

from synthetic AIRS radiances and the meteorological fields from the ECMWF ERA-Interim 52 

reanalysis (Dee et al., 2011) that are used to generate the synthetic radiances. A principal 53 

component-based multivariate linear regression scheme is then used to estimate spectral flux 54 

over the spectral bands not covered by the AIRS instrument. The end product is spectral flux at 55 

10 cm-1 interval over the entire LW spectrum. The spectral flux derived from this method has 56 

been extensively compared with collocated CERES OLR and the agreement is robustly 57 

consistent across different scene types and over different spatial and time scales, from 58 

footprint level to gridded data, from monthly means to annual means and interannual 59 

variations (Huang et al., 2008, 2010, 2014; Chen et al., 2013).  60 
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The aforementioned series of studies took a shortcut by relying on the scene type 61 

information from collocated CERES dataset. The other hyper-spectral sounders such as CrIS and 62 

IASI also fly with imagers such as VIIRS and AVHRR, respectively. These imagers provide 63 

information needed for scene type classification. However, to apply information from these 64 

imagers, the near-simultaneous observations as well as the collocation strategy are required to 65 

overcome the differences in observational area and time period (Huang et al., 2008; O’Carroll et 66 

al., 2012; Wang et al., 2013). The rich information contained in the hyperspectral radiances 67 

naturally leads to a hypothesis that all information needed for defining scene types might be 68 

already contained in the spectral radiances. Therefore, a scientifically intriguing question to ask 69 

is: can we directly estimate spectral flux from such observations of hyperspectral radiances 70 

without relying on auxiliary observations and thus avoid the trouble of collocation strategy and 71 

reduction of samples? To follow this line of thinking, this study explores ways of defining scene 72 

types and sub-scene types solely from hyperspectral measurements such as AIRS radiances, and 73 

then evaluates the spectral flux derived in this manner. As a first step, we  focus on clear-sky 74 

scene types in this study. This effort aims to estimate longwave spectral flux and broadband 75 

OLR directly from AIRS Level-1 calibrated radiances over each individual single footprint. This 76 

approach is different from other studies such as Dessler et al. (2008), Moy et al. (2010) and 77 

Susskind et al. (2012), which fed temperature and humidity fields from AIRS Level-2 retrievals 78 

(defined for 3-by-3 AIRS footprints) or even Level-3 monthly gridded data set into a radiative 79 

transfer model to compute the clear-sky OLR. Huang et al. (2008, 2010, 2014) and Chen et al. 80 

(2013) have demonstrated that such direct estimate of spectral flux from AIRS radiances is 81 

feasible and the estimated OLR highly agree with the collocated CERES OLR. Furthermore, the 82 
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merit of the spectral flux in testing climate models also warrants a feasibility study of deriving 83 

spectral flux (preferably over the entire longwave spectrum) from the hyperspectral satellite 84 

observations. All these facts have motivated the study presented in this article.  85 

The rest of this paper is organized as follows. Section 2 describes the dataset and forward 86 

model used in this study. Clear-sky detection, sub-scene type classification, and the derivation 87 

of spectral flux for the case of nadir-view observations are described in Section 3. Section 4 88 

validates the overall algorithm mentioned in Section 3. Section 5 discusses performances of the 89 

algorithm in other viewing zenith angles within ±45°. Conclusions and further discussion are 90 

then presented in Section 6.  91 

2. Data sets and forward model 92 

            The data sets and forward model used in this study are identical to those used in (Huang 93 

et al., 2008; Chen et al., 2013). Below is a brief depiction of the relevant features of data and 94 

forward model.  95 

            AIRS is an infrared grating array spectrometer aboard NASA’s Aqua satellite launched in 96 

2002 (Aumann et al., 2003). It measures radiances across three bands, 3.74-4.61 µm, 6.20-8.22 97 

µm and 8.8-15.4 µm, with a spectral resolving power (λ/∆λ) of ~1200, which converts to 98 

approximate full width at half max (FWHM) resolutions of ~0.5 cm-1 at 650 cm-1 and ~2.0 cm-1 at 99 

2500 cm-1. It scans from -49° to 49° across the track with 13.5-km ground footprints at the nadir 100 

view. This study uses AIRS level-1b calibrated radiances in the entire year of 2004.  101 

              For the purpose of validation, broadband OLR and sub-scene type information from the 102 

Aqua-CERES SSF Edition 3 are used. The strategy to collocate CERES and AIRS observations at 103 
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the footprint level is the same as described in Huang et al. (2008). The CERES SSF algorithm 104 

employs a MODIS-imagery based algorithm to detect clear-sky footprint (Geier et al., 2003). The 105 

total precipitable water (TPW) in the CERES SSF data set is retrieved from the Special Sensor 106 

Microwave Imager (SSM/I; Goodberlet et al., 1990). Its lapse rate (∆T) is derived from the GEOS 107 

Data Assimilation System (DAO, 1996). Surface skin temperatures (Ts) are estimated from 108 

MODIS clear-sky 11-µm radiance (Minnis et al., 2004). The CERES SSF algorithm uses ∆T, Ts, and 109 

TPW to define sub-scene types of clear-sky observations. Thus, the OLR can be inverted using 110 

appropriated broadband ADM and measured broadband radiances (Loeb et al., 2005; Kato and 111 

Loeb, 2005). Uncertainty of inverted CERES OLR is about 1% (Loeb et al., 2007). 112 

             The European Center for Medium range Weather Forecasting (ECMWF) ERA-Interim 113 

reanalysis (Dee et al., 2011) is used in this study as well. It has a spatial resolution of 1.5° 114 

latitude by 1.5° longitude and 37 vertical levels up to 1hPa. Similar to Huang et al. (2008) and 115 

Chen et al. (2013), the forward radiative transfer model used here is the MODerate resolution 116 

atmospheric TRANsmission code (MODTRAN, version 5; Anderson et al., 2007). MODTRAN is 117 

used to compute synthetic AIRS radiances and outgoing spectral fluxes at the top of 118 

atmosphere (TOA). MODTRAN 5 offers a spectral resolution as fine as 0.1 cm-1 (higher than AIRS 119 

spectral resolution). Compared with AIRS observations, MODTRAN 5 replicates AIRS brightness 120 

temperatures over 650-1600 cm-1 with mean difference of ~0.2 K (the AIRS noise equivalent 121 

delta temperature NEDT being 0.51 K over this band) (Anderson et al., 2007). AIRS radiances are 122 

generated by convoluting MODTRAN output and tabulated spectral response functions of AIRS 123 

channels (Strow et al., 2006). The TOA spectral fluxes are computed using a three-point 124 

Gaussian quadrature (Clough and Iacono, 1995).  125 
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3. Algorithm for estimating clear-sky LW spectral flux: the case of nadir view 126 

             The algorithm for estimating clear-sky LW spectral flux from nadir-view AIRS spectral 127 

radiances consists of three steps. The first step is to use radiance alone to decide whether an 128 

AIRS spectrum can be considered as a clear-sky spectrum or not (usually referred as clear-sky 129 

detection). The second step is to classify the sub-scene type of a clear-sky spectrum using 130 

radiance information alone. The third step is to invert the AIRS radiances to spectral flux over 131 

the entire LW spectrum.  132 

3.1. Clear-sky detection 133 

3.1.1. Algorithm design 134 

 Detecting clear-sky scenes from IR radiance alone is usually done by applying a 135 

sequence of tests (Amato et al., 2014; and references therein). We use three tests in sequence 136 

for this purpose. Test 1 is a spatial inhomogeneous test commonly referred as the “Golden 137 

Arches” test proposed first by Coakley and Bretherton (1983). For a given AIRS footprint and 138 

four adjacent AIRS footprints, if the standard deviation of brightness temperatures at a window 139 

channel 963.8 cm-1 (hereafter denoted as BT963.8) is smaller than a predetermined threshold 140 

value C1, the footprint passes Test 1. For the footprint that passes the “Golden Arches” test, 141 

Test 2 is a bi-spectral test, namely the brightness temperature difference between two narrow 142 

bands―one being 8 µm band (BT8, 8.17-8.92 µm) and the other being 11 µm band (BT11, 10.06-143 

11.25 µm). Test 2 utilizes the spectrally dependent feature to distinguish cloudy spectrum and 144 

clear-sky spectrum, because the 11  µm band is sensitive to water clouds and ice clouds, while 145 

the 8  µm band has weak water vapor absorption lines, and the BT8-BT11 difference has been 146 
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widely used for this purpose (e.g. Ackerman and Strabala, 1994). If the BT8-BT11 of an AIRS 147 

spectrum is less than a pre-determined value C2, the spectrum passes Test 2. Test 3 is a 148 

threshold test to compare the BT963.8 with the surface temperature at the ground footprint 149 

interpolated from 6-hourly ERA-interim reanalysis, termed as TsERA-BT963.8. BT963.8 is used as a 150 

surrogate of surface temperature in Chen and Huang (2014) because this channel has little 151 

atmospheric absorption in the case of clear sky. If TsERA-BT963.8 of an AIRS spectrum is smaller 152 

than a pre-determined value C3, the spectrum passes Test 3. Only when a spectrum passes all 153 

three tests, do we deem it to be a clear-sky spectrum. Note that, though ERA-interim reanalysis 154 

is used in this study, in future operational applications the reanalysis surface temperature can 155 

be replaced by the surface temperature from operational analysis. 156 

We used four months of collocated AIRS and CERES nadir-view observations in 2006 to 157 

empirically determine the threshold values used in the three tests (i.e., C1, C2, and C3). In 158 

another words, we use the clear-sky footprint identified by CERES as the “ground truth” and 159 

decide the threshold values based on collocated AIRS observations accordingly. The four 160 

months used for this purpose are January, April, July, and October of 2006. A total of ~1.56 161 

millions of collocated observations are available for this training purpose. We first categorize 162 

the observations into four groups: daytime ocean, nighttime ocean, daytime land, and 163 

nighttime land. Then for each group, the threshold value is defined as the value suitable for 164 

describing 95% of qualified observations. An example of how to decide C1 is given in Figure 1. 165 

Each panel plots the histogram of the standard deviation based on the BT963.8 of the clear-sky 166 

AIRS footprint and four adjacent AIRS footprints. Only 5% of clear-sky observations in each 167 

panel have a standard deviation larger than the value denoted by the dash-dot line, which is 168 
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then assigned as the value of C1. The value of C2 is decided in a similar manner. Water vapor 169 

continuum absorption is important for the AIRS channel at 963.8 cm-1.  Such absorption is 170 

dominated by humidity in the planetary boundary layer, which is highly correlated with surface 171 

temperature. Therefore, we divide observations further into different subgroups based on the 172 

value of TsERA and the value of C3 is determined for each subgroup accordingly. Table 1 173 

summarizes the threshold values for C1, C2, and C3 derived in this manner. 174 

3.1.2. Performance of the clear-sky test algorithm 175 

           We assess the performance of the clear-sky test algorithm using collocated CERES and 176 

AIRS nadir-view observations in the entire year of 2004 (4.48 millions of observations in total). 177 

The performance is summarized in Table 2. The false negative (FN) rate refers to the percentage 178 

of collocated CERES clear-sky observations that have been classified as cloudy-sky observations 179 

by our algorithm. The false positive (FP) rate refers to the percentage of collocated CERES 180 

cloudy-sky observations that have been classified as clear-sky observations by our algorithm. 181 

The overall accuracy rate refers to the percentage of cases in which our algorithm can correctly 182 

classify the footprints. It can be seen that, although using three tests together increases the 183 

rate of false negative, such an approach is also effective in reducing the false positive rate. 184 

Given that the number of cloudy-sky observations is ~9-10 times more than that of clear-sky 185 

observations, using three tests together can achieve a better accuracy than using one of the 186 

tests alone. As far as the FN and FP rates are concerned, this algorithm is comparable to other 187 

clear-sky detection algorithms that are based on IR spectral radiances alone (e.g. Table 4 in 188 

Amato et al., 2014). 189 
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3.2. Sub-scene type classification 190 

           The second step in the overall algorithm is to classify the sub-scene types of clear-sky 191 

observations identified by the algorithm described in Section 3.1. The sub-scene types adopted 192 

here are largely similar to the discrete intervals defined by Table 3 in Loeb et al. (2005), which 193 

depend on the total precipitable water (TPW), surface temperature (Ts), and lapse rate (∆T) 194 

defined as temperature difference between the surface and 300 hPa above it. Similar to Chen 195 

and Huang (2014), here BT963.8 is used as a surrogate of surface temperature. ∆T is inferred 196 

from brightness temperature differences of two AIRS channels: 963.8 and 748.6 cm-1 (hereafter 197 

denoted as ∆BT963.8 - 748.6). A quick estimate of TPW is obtained by a look-up-table approach 198 

proposed by Chen and Huang (2014), which makes use of double difference of two pairs of AIRS 199 

channels as well as BT963.8 and ∆BT963.8 - 748.6 to construct the look-up-table. Table 3 lists the 200 

accuracy of this algorithm based on the collocated AIRS and CERES observations in 2004 and 201 

the comparison with the auxiliary information of TPW, Ts, and ∆T in the CERES SSF dataset. It 202 

can be seen that, though this estimate method is solely based on AIRS radiances, the accuracy is 203 

80% or even higher.   204 

3.3. Estimate of fluxes from radiance measurements 205 

 The last component in our algorithm is to invert spectral fluxes from the AIRS radiances. 206 

Huang et al. (2008) adopted the same sub-scene type classification as in Loeb et al. (2005) for 207 

inverting AIRS radiance to spectral flux. Therefore, the algorithm in Huang et al. (2008) can be 208 

used here without further modification. Specifically, the spectral radiance ( )(θAIRSI  at each 209 

viewing zenith angle θ ) is first converted to spectral flux ( AIRSF ) over each AIRS channel using a 210 
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pre-calculated spectral ADM ( )(θAIRSR ) for each sub-scene type, )(/)( θθπ AIRSAIRSAIRS RIF ⋅= . 211 

Then a principle component-based multivariate prediction scheme is used to estimate spectral 212 

fluxes over the spectral portion not covered by the AIRS instrument. The performance of this 213 

radiance-to-flux algorithm and its characteristics has been documented in detail in Huang et al. 214 

(2008) and Chen et al. (2013).  215 

4. Validation of the overall algorithm  216 

This section focuses on validation of the overall algorithm in terms of its performance in 217 

estimating the spectral flux over the entire longwave spectrum. The following parts (1)-(3) 218 

examine the performance of the scene type classification algorithm, and part (4) examines the 219 

overall performance of the clear-sky detection and the scene type classification algorithms. 220 

(1) We feed 6-hourly ERA-interim reanalysis data to the forward model to simulate 221 

clear-sky AIRS radiances and apply our algorithm to estimate the spectral flux (hereafter FAIRS-222 

only). We then compare this spectral flux with clear-sky spectral fluxes directly computed using 223 

the ECMWF ERA-Interim reanalysis with the same forward model (hereafter FERA). This is an 224 

idealized test because the forward modeling is assumed to be a surrogate of reality. Specifically, 225 

6-hourly ERA-interim reanalysis data from January, April, July, and October 2004 are 226 

subsampled and interpolated onto the trajectory of AIRS nadir-view observations. Then 227 

MODTRAN5 is used to generate synthetic AIRS radiances and synthetic spectral flux FERA. Then 228 

FAIRS-only is derived from synthetic AIRS radiances based on the scene types determined from 229 

synthetic AIRS radiances alone, instead of directly determined from ERA profiles as in our 230 

previous works of Huang et al. (2008) and Chen et al. (2013). In total 290,761 profiles are used 231 
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and the number of profiles for each sub-scene type varies from 50 to 64992. The averaged 232 

difference of the spectral flux for each scene type, denoted as FAIRS-only - FERA, at 10 cm-1 spectral 233 

interval is shown in Figure 2. For the window bands, the differences (FAIRS-only - FERA) are 234 

generally within ± 0.03 Wm-2 per 10 cm-1. Exceptions are seen for those sub-scene types with 235 

very dry atmosphere above a hot surface. These circumstances make it difficult for our 236 

radiance-based algorithm to faithfully estimate the TPW. As shown in Table 3, the frequency of 237 

occurrences for such scene types is small, e.g., hot surface with temperature above 310 K is no 238 

more than 2%. Outside the window bands, the FAIRS-only - FERA differences are usually within 239 

±0.02 Wm-2 per 10 cm-1.  240 

              (2) For collocated AIRS and CERES clear-sky observations in 2004, we use the algorithm 241 

to derive the spectral flux and OLR (the summation of spectral flux) from AIRS radiance 242 

(hereafter, OLRAIRS-only) and compare it with the collocated CERES clear-sky OLR (hereafter 243 

OLRCERES). Upper panels in Figure 3 show the annual-mean daytime and nighttime difference 244 

between OLRAIRS-only and OLRCERES, respectively. The differences are averaged onto 2° latitude by 245 

2.5° longitude grids from 80°S to 80°N. Lower panels in Figure 3 show the histograms of OLRAIRS-246 

only-OLRCERES differences for all collocated AIRS and CERES clear-sky footprints. Figure 3a and 3b 247 

show that the difference tends to be negative over land areas (~1-2 Wm-2) and positive over 248 

extra-tropical oceans (~1-3 Wm-2). The RMS (root-mean-square) differences for Figure 3a and 249 

3b are 1.79 and 1.11 Wm-2, respectively. Such pattern and magnitude of the differences in 250 

Figure 3a and 3b are comparable to the results using the scene type information directly from 251 

the CERES SSF data set, as shown in Figure 5a and 5b in Chen et al. (2013). In terms of the 252 

statistics of OLRAIRS-only – OLRCERES difference for individual footprint, the daytime mean 253 
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difference is 0.91 Wm-2 with a standard deviation of 2.34 Wm-2 (Figure 3c) and the nighttime 254 

mean difference is 0.14 Wm-2 with a standard deviation of 1.85 Wm-2 (Figure 3d). These 255 

statistics are comparable to those in Huang et al. (2008) and Chen et al. (2013).  256 

 (3) We examine the statistics of OLRAIRS-only - OLRCERES differences for each available clear-257 

sky sub-scene type in the data used in part (2). The results are summarized in Figure 4. The 258 

averaged daytime OLRAIRS-only - OLRCERES differences for all sub-scene types are between -1.6 259 

Wm-2 and 3.3 Wm-2 with a standard deviation no larger than 3.8 Wm-2. For the nighttime, the 260 

mean difference for all sub-scene types varies from -0.7 Wm-2 to 2.2 Wm-2 and the standard 261 

deviation is less than 2.5 Wm-2. Given that the radiometric uncertainty of CERES OLR is about 1% 262 

and typical OLR value varies between 200-300 Wm-2, the mean differences (black line in Figure 263 

4) are within or at least comparable to the radiometric uncertainty of CERES OLR (red line in 264 

Figure 4). 265 

(4) In addition to using collocated clear-sky observations to evaluate the algorithm, we 266 

also apply the algorithm to all collocated AIRS and CERES nadir-view observations in the entire 267 

year of 2004 and obtain OLR for all AIRS measurements that our algorithm determines to be 268 

clear-sky observations. The mean difference is 1.52 Wm-2 and standard deviation is 2.46 Wm-2. 269 

The figure is not shown here. We then compare the OLR of those “false positive” observations, 270 

i.e. footprints identified as clear-sky scenes by our algorithm but as cloudy-sky scenes by the 271 

CERES algorithm. Figure 5 shows the histograms of OLR differences (OLRAIRS-only – OLRCERES) of 272 

such cases of “false positive”. The mean difference is 2.93 Wm-2 and 1.60 Wm-2 for the daytime 273 

and nighttime, respectively. The standard deviation is 2.3 Wm-2 for both cases. The mean OLR 274 

for the cases shown in Figure 5a and 5b is 288.7 Wm-2 and 279.0 Wm-2, respectively, which 275 
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means the relative difference between OLRAIRS-only and OLRCERES is only 1.0% and 0.6%. This 276 

suggests that, even though the algorithm misclassifies such cloudy-sky observations as clear-sky 277 

ones, the estimated OLR difference between OLRAIRS-only and OLRCERES   is only 1% or less.  278 

5. Applicability to other viewing zenith angles (VZAs) 279 

               The algorithm described above is for nadir-view AIRS radiances. It can be extended to 280 

other viewing zenith angles by taking the dependency of upwelling radiances on viewing zenith 281 

angles into account. Specifically, for the first two steps depicted in Section 3, the threshold 282 

values and look-up-tables need to be adjusted in accordance with the viewing zenith angles. 283 

The algorithm in the third component has already taken viewing zenith angle into account 284 

(Huang et al., 2008) and thus no additional effort is needed. Since the objective of this study is 285 

to demonstrate the feasibility of the algorithm, we summarize the performance of the 286 

algorithm for other VZAs instead of describing all details as done for the case of nadir-view 287 

observations. Figure 6a shows the success rate for the algorithm to accurately classify cloudy 288 

and clear-sky footprints as a function of the VZA, which still uses the collocated CERES scene 289 

type information as ground truth. The algorithm performs consistently across all VZAs; when 290 

the VZA increases from zero to 45º, the success rate varies within 2%. Figure 6b shows the 291 

differences between OLRAIRS-only and OLRCERES for both daytime and nighttime results. Both 292 

differences, 1.93-2.15 Wm-2 for daytime and 1.07-1.67 Wm-2 for nighttime, change little with 293 

respect to the VZA.  294 

The performance with respect to different VZAs here is consistent with previous results 295 

in Huang et al. (2008) and Chen et al. (2013), two studies that rely on the sub-scene type 296 
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information from the CERES SSF dataset. The algorithm in this study behaves robustly across 297 

the range of VZAs for AIRS measurements. The other hyperspectral sounders make 298 

observations over the similar range of VZAs. Therefore, the robust performances here further 299 

assure the potential of extending the algorithm to other hyperspectral sounding observations.   300 

6. Conclusions and discussion 301 

               Using AIRS observation as an example, this study develops an algorithm based solely on 302 

spectral radiances to estimate LW clear-sky spectral flux. The algorithm first detects clear-sky 303 

spectrum by a three-step threshold test, i.e., the “Golden Arches” test for the spatial 304 

homogeneity, a bi-spectral test for spectral features of clear-sky absorption and emission, and a 305 

single-channel thermal threshold test for an extra check against surface temperature. 306 

Atmospheric and surface parameters (total precipitable water, lapse rate and surface 307 

temperature) needed for categorizing sub-scene types are directly estimated using AIRS 308 

radiances at six channels and the pre-constructed lookup tables. The accuracy of clear-sky 309 

detection and sub-scene type classification, and their effect on clear-sky spectral flux derivation 310 

have been assessed. When using CERES scene type information as the ground truth, the 311 

algorithm can achieve an accuracy rate of 88.7% for classifying nadir-view clear-sky and cloudy 312 

footprints. Differences between OLR derived using the algorithm and the collocated CERES OLR 313 

show no strong dependence on the sub-scene types. The statistics of OLRAIRS-only - OLRCERES 314 

obtained here are comparable to those in Huang et al. (2008) and Chen et al. (2013), two 315 

studies that directly used the scene-type and clear-sky information from the CERES data set.  316 

The algorithm performs consistently over different viewing zenith angles.  317 
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             The purpose of this study is to explore the additional value of hyperspectral sounding 318 

measurements, i.e., by deriving spectral flux directly from such observations as the spectral 319 

fluxes that have been shown to have unique merit in climate model evaluations (Huang et al., 320 

2006; Huang et al., 2013; Huang et al., 2014). The broadband flux measured by CERES and its 321 

predecessor ERBE has become a benchmark standard in the earth observation community, so 322 

does the sophisticated and well-validated multiple data-fusion approach used in the CERES data 323 

product.  It is not the intention of this study to produce merely another set of broadband flux 324 

products. Instead, the emphasis here is to derive the spectral flux, which can help us 325 

understand the compensating biases in modeled broadband radiation flux. 326 

In general, the performance of the algorithm is more affected by the accuracy of clear-327 

sky detection than the rest of components. To use LW spectral observations alone to detect 328 

clear sky is not easy, partially because it is difficult to distinguish optically thin clouds or small 329 

fraction of clouds within the field of view. In operational use, the accuracy of clear-sky 330 

detection could be improved if other simultaneous measurements, especially those made at 331 

higher spatial resolutions, are available. A good example is the use of MODIS imageries in the 332 

CERES SSF algorithm. Another example is the use of microwave sounding observations to help 333 

the surface parameter retrievals, which in turn helps the retrievals of atmospheric parameters 334 

including the cloud vs. clear-sky detection (Kahn et al., 2014). 335 

        While the algorithm presented in this study is only for clear-sky spectra, it is conceivable 336 

that this algorithm can be evolved for estimating spectral fluxes from cloudy-sky hyperspectral 337 

observations as well. In the case of cloudy-sky spectra, the cloud parameters, especially cloud 338 

fraction and cloud top height, will need to be considered in the definition of sub-scene types. 339 
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The rich information contained in hyperspectral radiances is likely sufficient to define sub-scene 340 

types needed for the algorithm.  341 
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Table 1. Threshold values used in the clear-sky tests. Details of threshold definitions and the 471 

ways to determine them can be found in Section 3.1. 472 

Thresholds  Daytime Ocean  Nighttime Ocean  Daytime Land  Nighttime Land  

C1 (K)  0.62 0.61  2.17  1.650  

C2  (K)  -1.39  -1.38  -2.04  -0.510  

C3  (K)  2.47 (TsERA<280 K) 

3.12 (280-285 K) 

3.61 (285-290 K) 

3.61 (290-295 K) 

3.95 (295-300 K) 

5.49 (> 300 K) 

2.29(TsERA<280 K) 

3.12 (280-285 K) 

3.11 (285-290 K) 

3.54 (290-295 K) 

4.13 (295-300 K) 

5.82(>300 K)  

1.24 (TsERA<290 K) 

1.49 (290-295 K) 

3.28 (295-300 K) 

3.99 (300-305 K) 

5.31 (305 -310 K) 

5.76 (>310 K)  

2.28 (TsERA<260 K) 

5.41 (260-270 K) 

5.61 (270-275 K) 

6.72 (275 -280 K) 

7.36(280-285 K) 

8.25 (>285 K)  

 473 

Table 2. The performance of clear-sky detection algorithm. FN (false negative) is the percentage 474 

of CERES clear-sky observations misclassified as cloudy sky by the algorithm. FP (false positive) 475 

is the percentage of CERES cloudy-sky observations misclassified as clear sky by the algorithm. 476 

Accuracy is the overall success rate compared to the CERES algorithm in terms of distinguishing 477 

clear- vs. cloudy-sky observations. Steps 1-3 are defined in detail in Section 3.1. 478 

 Ocean Land Near-globe (81ºS-81ºN) 
 FN (%) FP 

(%) 
Accuracy 

(%) 
FN (%) FP 

(%) 
Accuracy 

(%) 
FN (%) FP 

(%) 
Accuracy 

(%) 
Step 1 4.8  19.7  81.3  6.2  33.1  71.1  5.4  22.4  79.1  
Steps 
1+2 

9.7  14.1  86.2  10.0  19.2  82.2  9.8  15.2  85.3  

Steps 
1+2+3 

13.9  10.0  89.8  14.0  15.4  84.8  13.9  11.1  88.7  

 479 
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Table 3. Accuracy of the sub-scene type classification algorithm described in subsection 3.2. The 480 

statistics are based on collocated nadir-view AIRS and CERES observations in 2004. ‘Occ.’ and 481 

‘Acc.’ in the Table denotes occurrence and accuracy, respectively. The sub-scene type is coded 482 

as a three-digit number. The first digit refers to TPW, the second one refers to ∆T, and the last 483 

refers to Ts, as defined in the table. The definition of sub-scene types here is identical to the LW 484 

discrete intervals in Loeb et al. (2005). 485 

Sub-
scene 
type 

TPW 
(cm) 

Occ. 
(%) 

Acc. 
(%) 

Sub-
scene 
type 

∆T 
(K) 

Occ. 
(%) 

Acc. 
(%) 

Sub-
scene 
type 

Ts 
(K) 

Occ. 
(%) 

Acc. 
(%) 

1-- 0-1 16.3 63.1 -1- <15 32.9 70.5 --1 <270 1.24 99.8 
2-- 1-3 55.0 86.8 -2- 15-30 65.8 85.1 --2 270-290 24.7 98.2 
3-- 3-5 25.7 82.0 -3- 30-45 1.29 48.4 --3 290-310 73.1 93.2 
4-- >5 3.0 53.8 -4- >45 0.002 16.7 --4 310-330 0.98 22.1 

        --5 >330 0.0 - 
Overall 100 80.7   100 79.8   100 93.8 

 486 
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Figure Captions 488 

Figure 1. Histogram of the standard deviations of 963.8 cm-1 brightness temperatures among an 489 

AIRS clear-sky footprint and four adjacent AIRS footprints derived. The clear-sky information 490 

from collocated CERES observation is used. The histograms for daytime ocean, daytime land, 491 

nighttime ocean, and nighttime land are plotted separately. The black dash line denotes the 95% 492 

percentile and corresponds to the value of C1 shown in Table 1.  493 

Figure 2. The mean differences between the predicted spectral fluxes based on synthetic AIRS 494 

spectra and the directly computed fluxes for different sub-scene types. The naming convention 495 

of sub-scene type is defined in Table 3. The spectral flux is for every 10 cm-1 interval from 10 cm-496 

1 to 2000 cm-1. 497 

Figure 3. (a) Near-global distribution of annual-mean differences between daytime OLR derived 498 

from clear-sky AIRS nadir-view radiances using the algorithm in this study and the collocated 499 

CERES clear-sky daytime OLR (OLRAIRS-only - OLRCERES). The data in 2004 is used and averaged onto 500 

2.5º longitude by 2º latitude grids. (b) Same as (a) but for annual-mean nighttime OLR 501 

differences. (c) The histograms of daytime OLRAIRS-only - OLRCERES differences among all collocated 502 

AIRS and CERES nadir-view footprints. (d) Same as (c) but for the histogram of nighttime 503 

OLRAIRS-only - OLRCERES differences. Fifty bins are used in both (c) and (d). The mean differences ± 504 

standard deviations and number of observations are also labeled on the plot.  505 

Figure 4. (a) Black line denotes the mean of daytime OLR difference (OLRAIRS-only - OLRCERES) for 506 

each sub-scene type. Ticked vertical lines denote ±1σ (standard deviation). Red line is the 507 

uncertainty of OLRCERES (assuming 1% of mean OLRCERES for all scene types). Blue bars indicate 508 

the frequency of occurrence of each sub-scene type in percentage. (b) Same as (a) but for 509 
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nighttime observations.  The numbers of daytime and nighttime observations are 1.86×105 and 510 

1.87×105, respectively.  511 

Figure 5. (a) and (b) are similar as Figure 3(c) and 3 (d) but for the AIRS footprints classified as 512 

clear sky by the algorithm in this study while their collocated CERES footprints are identified as 513 

cloudy sky.  Mean ± standard deviation of the difference (OLRAIRS-only – OLRCERES) is also given on 514 

the plot.  515 

Figure 6. (a) Success rate of the algorithm in distinguishing clear-sky and cloudy-sky footprints 516 

as a function of viewing zenith angle (VZA). (b) The difference of OLRAIRS-only – OLRCERES as a 517 

function of VZA. Ticked vertical lines denote the ±1σ (standard deviation). 518 
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 520 

Figure 1. Histogram of the standard deviations of 963.8 cm-1 brightness temperatures among an 521 

AIRS clear-sky footprint and four adjacent AIRS footprints derived. The clear-sky information 522 

from collocated CERES observation is used. The histograms for daytime ocean, daytime land, 523 

nighttime ocean, and nighttime land are plotted separately. The black dash line denotes the 95% 524 

percentile and corresponds to the value of C1 shown in Table 1.  525 
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 526 

Figure 2. The mean differences between the predicted spectral fluxes based on synthetic AIRS 527 

spectra and the directly computed fluxes for different sub-scene types. The naming convention 528 

of sub-scene type is defined in Table 3. The spectral flux is for every 10 cm-1 interval from 10 cm-529 

1 to 2000 cm-1. 530 
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 532 

 533 

Figure 3. (a) Near-global distribution of annual-mean differences between daytime OLR derived 534 

from clear-sky AIRS nadir-view radiances using the algorithm in this study and the collocated 535 

CERES clear-sky daytime OLR (OLRAIRS-only - OLRCERES). The data in 2004 is used and averaged onto 536 

2.5º longitude by 2º latitude grids. (b) Same as (a) but for annual-mean nighttime OLR 537 

differences. (c) The histograms of daytime OLRAIRS-only - OLRCERES differences among all collocated 538 

AIRS and CERES nadir-view footprints. (d) Same as (c) but for the histogram of nighttime 539 

OLRAIRS-only - OLRCERES differences. Fifty bins are used in both (c) and (d). The mean differences ± 540 

standard deviations and number of observations are also labeled on the plot.  541 
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 542 

Figure 4. (a) Black line denotes the mean of daytime OLR difference (OLRAIRS-only - OLRCERES) for 543 

each sub-scene type. Ticked vertical lines denote ±1σ (standard deviation). Red line is the 544 

uncertainty of OLRCERES (assuming 1% of mean OLRCERES for all scene types). Blue bars indicate 545 

the frequency of occurrence of each sub-scene type in percentage. (b) Same as (a) but for 546 

nighttime observations.  The numbers of daytime and nighttime observations are 1.86×105 and 547 

1.87×105, respectively. 548 
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 550 

Figure 5. (a) and (b) are similar as Figure 3(c) and 3 (d) but for the AIRS footprints classified as 551 

clear sky by the algorithm in this study while their collocated CERES footprints are identified as 552 

cloudy sky.  Mean ± standard deviation of the difference (OLRAIRS-only – OLRCERES) is also given on 553 

the plot.  554 
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 557 

Figure 6. (a) Success rate of the algorithm in distinguishing clear-sky and cloudy-sky footprints 558 

as a function of viewing zenith angle (VZA). (b) The difference of OLRAIRS-only – OLRCERES as a 559 

function of VZA. Ticked vertical lines denote the ±1σ (standard deviation). 560 

 561 

Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-268, 2016
Manuscript under review for journal Atmos. Meas. Tech.
Published: 7 September 2016
c© Author(s) 2016. CC-BY 3.0 License.


